Dopaminergic Differentiation of Human Embryonic Stem Cells on PA6-Derived Adipocytes.

نویسندگان

  • M Oktar Guloglu
  • Anna Larsen
چکیده

Human embryonic stem cells (hESCs) are a promising source for cell replacement therapies. Parkinson's disease is one of the candidate diseases for the cell replacement therapy since the motor manifestations of the disease are associated with the loss of dopaminergic neurons in the substantia nigra pars compacta. Stromal cell-derived inducing activity (SDIA) is the most commonly used method for the dopaminergic differentiation of hESCs. This chapter describes a simple, reliable, and scalable dopaminergic induction method of hESCs using PA6-derived adipocytes. Coculturing hESCs with PA6-derived adipocytes markedly reduces the variable outcomes among experiments. Moreover, the colony differentiation step of this method can also be used for the dopaminergic induction of mouse embryonic stem cells and NTERA2 cells as well.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reprogramming by cytosolic extract of human embryonic stem cells improves dopaminergic differentiation potential of human adipose tissue-derived stem cells

The extract of pluripotent stem cells induces dedifferentiation of somatic cells with restricted plasticity. In this study, we used the extract of human embryonic stem cells (hESC) to dedifferentiate adipose tissue-derived stem cells (ADSCs) and examined the impact of this reprogramming event on dopaminergic differentiation of the cells. For this purpose, cytoplasmic extract of ESCs was prepare...

متن کامل

Assessment of stromal-derived inducing activity in the generation of dopaminergic neurons from human embryonic stem cells.

Producing dopaminergic (DA) neurons is a major goal of human embryonic stem cell (hESC) research. DA neurons can be differentiated from hESC by coculture with the mouse PA6 stromal cell line; this differentiation-inducing effect is termed stromal-derived inducing activity (SDIA). The molecular and biochemical nature of SDIA is, however, unknown. Various studies have suggested that SDIA involves...

متن کامل

A Novel Combination of Factors, Termed SPIE, which Promotes Dopaminergic Neuron Differentiation from Human Embryonic Stem Cells

BACKGROUND Stromal-Derived Inducing Activity (SDIA) is one of the most efficient methods of generating dopaminergic (DA) neurons from embryonic stem cells (ESC). DA neuron induction can be achieved by co-culturing ESC with the mouse stromal cell lines PA6 or MS5. The molecular nature of this effect, which has been termed "SDIA" is so far unknown. Recently, we found that factors secreted by PA6 ...

متن کامل

Fibroblast Growth Factor-20 Increases the Yield of Midbrain Dopaminergic Neurons Derived from Human Embryonic Stem Cells

In the central nervous system, fibroblast growth factor (FGF)-20 has been reported to act preferentially on midbrain dopaminergic neurons. It also promotes the dopaminergic differentiation of stem cells. We have analyzed the effects of FGF-20 on human embryonic stem cells (hESCs) differentiation into dopaminergic neurons. We induced neuronal differentiation of hESCs by co-culturing those with P...

متن کامل

Extract of mouse embryonic stem cells induces the expression of pluripotency genes in human adipose tissue-derived stem cells

Objective(s): In some previous studies, the extract of embryonic carcinoma cells (ECCs) and embryonic stem cells (ESCs) have been used to reprogram somatic cells to more dedifferentiated state. The aim of this study was to investigate the effect of mouse ESCs extract on the expression of some pluripotency markers in human adipose tissue-derived stem cells (ADSCs). Materials and Methods: Human A...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Methods in molecular biology

دوره 1341  شماره 

صفحات  -

تاریخ انتشار 2016